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Abstract
We studied the relaxation processes of glycerol by a transient grating experiment
with polarization selectivity and optical heterodyne detection. The density
response of supercooled glycerol, for a wavevector q = 0.63 µm−1, has been
studied in that temperature range (T = 200–340 K), where the rearrangement of
the structure (α-relaxation) and thermal diffusion occur on the same timescale.
A strong interaction between the two modes is observed, manifesting in a dip
in the T dependence of the apparent thermal conductivity and in a flattening
of the apparent α-relaxation time upon cooling. A parameter-free thermo-
hydrodynamic model for the long-time response is developed. The model is
capable of quantitatively reproducing the data and of explaining the observed
phenomenology.

1. Introduction

Whenever an inhomogeneous temperature or pressure field exists inside a substance, heat and
momentum will flow, giving rise to processes, thermal diffusion and sound propagation, which
drive the system toward homogeneity. At low enough wavevector q (i.e. at the typical q values
of a light scattering experiment) the timescales of the two processes are well separated, so
that sound propagation is adiabatic and thermal diffusion isobaric. Every other microscopic
dynamical process evolves on such a fast timescale that it enters the dynamic equations simply
by determining the actual values of thermodynamic derivatives and transport coefficients. The
situation changes when a liquid is supercooled below its melting temperature and the structural
relaxation time, τα , rapidly grows upon cooling. When τα becomes of the order of a sound-
wave period we observe phenomena such as the sound-velocity dispersion and sound absorption
which have been widely investigated by ultrasonic and Brillouin spectroscopy and commonly
described in terms of a relaxing bulk modulus or viscosity [1, 2]. Upon further cooling, τα

reaches the timescale of the thermal diffusion, giving rise to a non-trivial diffusive heat equation,
usually described in terms of specific-heat relaxation, and experimentally observed by specific
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heat spectroscopy [3] and forced Rayleigh scattering [4, 5]. However, though both viscosity
and specific heat relaxations are manifestations of the same microscopic process, there is no
commonly accepted form for the equations governing the fluid dynamics in the region where
structural relaxation and thermal diffusion occur on the same timescale. The main difficulty
arises when more than one single thermodynamic derivative has to be generalized to have a
frequency dependence and one has to introduce free parameters relating the relaxation times
and shape parameters appearing in the various relaxation functions. In this paper, we present
an optical heterodyne transient grating (HD-TG) experiment [6] of liquid and supercooled
glycerol covering a wide temperature range. First we studied the material response, performing
HD-TG experiments with selective polarization configurations, so that we proved in this glass-
former the response is dominated by the density relaxation excited by thermal effects (also
called impulsive stimulated thermal scattering, ISTS [7]). In the region where the structural
and entropic modes are temporally overlapped, a strong interaction between the two modes is
observed, manifesting as an apparent freezing of the structural relaxation time upon cooling,
and a marked non-exponential decay of a long-time ISTS signal, usually governed by thermal
diffusion. This interaction produces a dip in the T dependence of the apparent thermal
conductivity of different supercooled liquids [4–6] that were previously unexplained. The
proposed model is thus capable of explaining these phenomena as the non-exponential decay
of the long-time part of the ISTS data, providing the correct temperature behaviour of the
thermal conductivity and structural relaxation times. ISTS data are quantitatively reproduced
by a thermo-hydrodynamic model which assumes local thermodynamic equilibrium in an
extended parameter space. Every parameter entering the model is a well defined physical
quantity. Using literature data we are able to predict ISTS responses in very good agreement
with the measured ones.

2. Transient grating experiments

In a transient grating (TG) experiment two high power laser pulses, obtained by dividing a
single pulsed laser beam, interfere inside the sample and they produce a spatially periodic
variation of the index of refraction, see figure 1. A second laser beam, typically of a different
wavelength, is acting as a probe. It impinges on the induced grating at the Bragg angle and it
produces a diffracted beam, spatially separated by the pump pulses and probe beam itself. This
diffracted beam is the signal measured in a TG experiment and it yields dynamic information
from the relaxing grating. This induced variation of the dielectric constant of the sample can
be described by the following expression [8, 9]:

�εi j(r, t) =
∫

dr′
∫

dt ′ Rε
i jkl(r − r′, t − t ′)Fex

kl (r′, t ′) (1)

where Fex
kl represents the exciting force produced by the two pumping pulses of the pump, k

and l being the Cartesian coordinates of the electric fields of these beams, while j and i refer
to the electric fields of the probe and the diffracted beams, respectively. Rε

i jkl is the response
function of the system that defines the dynamical properties of the experimental observable,
the local dielectric tensor, �εi j . The response function has a tensorial nature, Ri jkl , where
the different components are selected through the excitation, probing and detection directions
of polarizations. In the experiments performed here, the directions of the four electric fields
were such that i = j and k = l, so that only the Rααββ components were detected. We will
consider α or β = V if the polarization is orthogonal to the scattering plane, or α, β = H
if the polarization is parallel to the scattering plane, see figure 1. The exciting force is
defined by the interference field, Eex(r, t), produced by the two pumping beams, Eex

1 (r, t)
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Figure 1. Sketch of the optical set-up used in a TG experiment with different polarization selections.
Eex are the excitation laser pulses and the E pr and Ed are the probing and diffracted beams,
respectively. For each beam the possible polarization directions are reported. The local field
(Eloc), used for the optical heterodyne detection, has a polarization parallel to the measured Ed

polarization.

and Eex
2 (r, t), according to the following equations: Fex

kl (r, t) = Eex
k (r, t)Eex

l (r, t), being
Eex(r, t) = Eex

1 (r, t)+Eex
2 (r, t). In the following calculations we will take the two pumping

beams as plane waves with vertical polarization, k = l = V , and different wavevectors, q1

and q2, respectively, so that Eex
n (r, t) = Eex

V (qn, t) = Eex
V (t)ei(qn ·r−ωt) + c.c. Considering the

experimental geometry reported in figure 1 and assuming the impulsive limit in time (i.e. the
excitation time is much shorter than the observable characteristic times) and in wavevector
(i.e. the excitation spot size is much larger than the material wavelength scale), the expression
of the excitation force can be easily calculated [8, 9]:

Fex
V V (r, t) ∝ (Eex

V )2δ(t)[1 + cos(q · r)] (2)

where q = q1 − q2 and

|q| = 4π sin(θe/2)

λe
(3)

λe and θe are the wavelength and the incidence angle of the excitation laser pulses. This
wavevector defines the spatial modulation of the induced TG and hence the direction of
diffraction of the probe field according to the phase-matching or Bragg condition: qd = qpr +q,
where qpr and qd are the wavevectors of the probe and diffracted field, respectively. The
r -independent term of the excitation force does not contribute to the signal detected at the
Bragg angle in the present experimental configuration. If, besides the approximations used
above for the pumping beams, we consider the probe spot size to be much larger than the
grating spacing and the frequency difference between the probe and diffracted beam and the
propagation times through the sample to be negligible, the diffracted field in the qd direction can
be written as [8, 9]: Ed

α(r, t) � ei(ωt−qd ·r)�εαα(q, t)E pr
α + c.c., where the probe is a continuous

field with α polarization. Furthermore, considering equations (1) and (2) we easily find that
�εαα(q, t) = Rε

ααV V (q, t)(Eex
V )2, that together with the previous equation defines completely
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the diffracted field as Ed
α(r, t) � ei(ωt−qd ·r) Rε

ααV V (q, t)E pr
α (Eex

V )2+c.c. In a HD-TG experiment
[6] the measured signal is S(t) ∝ 〈(Ed + Eloc)2〉 = 〈(Ed)2〉 + 〈(Eloc)2〉 + 2〈(Ed Eloc)〉, where
Eloc is the local field used as the beating field and 〈·〉 represents the time average over the
optical period. In the previous equation, the last term is the heterodyne contribution and it can
be experimentally extracted by performing measurements characterized by selected phases of
the local field. Finally, the heterodyne signal is

SH D
ααV V (q, t) � Rε

ααV V (q, t)E loc
α E pr

α (Eex
V )2. (4)

Hence, according to the present experimental configuration and approximations, the HD-TG
signal measures directly the relaxation processes defined by the tensor components Rε

ααV V of
the dielectric response function. In particular, the two components Rε

V V V V and Rε
H H V V can be

measured using the α = V or H polarizations of the probe and diffracted fields. Formally, the
dielectric response function contains all the physical information that these experiments can
obtain. Nevertheless to define properly the connection between the material modes and the
measured signal, we have to consider again the key processes of these experiments. Three steps
can be identified: the first step is concerned with the forcing process and how effective it is in
the excitation of the material modes; the second step defines how these modes propagate and
modify the local dielectric properties of the material; the last step is the probing process that
defines how the experiment measures the induced modification of the dielectric function. In the
excitation process, the interference electric field interacts with the material through different
physical mechanisms. As reported in [6, 10–12], three main effects have to be considered
for near-infrared pulsed excitation in weakly absorbing materials (absorption typically due to
overtone and/or combination of vibrational bands):

(a) heat deposition (this has been reported as thermal effects),
(b) the electrostriction effect (often called the Brillouin effect), and
(c) the electric torque applied to the molecules by the electric field because of the presence

of an anisotropic polarizability (reported as the optical Kerr effect [13]).

Indeed electronic effects are also present but we will not take these into account since in
the present experiment they do not contribute to the response function (in fact, they relax on
a timescale much shorter than the pulse duration). So Fex , that is the dielectric excitation
force, indeed produces three excitation forces that drive the material modes: Fhd , a heat
deposition force that drives directly the energy equation, Fes an electrostrictive force that
drives the density and Fet a electrotorque force that drives the local orientational distribution
of the molecules. All of these forces are normally present but, depending on the nature of the
radiation–material interaction, some of them cannot be effective. The excitation brings the
material out of equilibrium and, in the framework of non-linear response theory, the response
function describes how the system relaxes back toward the equilibrium state. Rε describes the
relaxation of the dielectric properties but, of course, it is directly connected with the relaxation
functions of the material modes [6, 14]; which modes are effective in defining the dielectric
relaxation depends on which forcing component is active and on the equations governing the
modes’ dynamics. In other words, since the equations that define the dynamics of thermal,
density and orientational variables are coupled, more then one material mode has to be taken
into account, even if a single force is efficient. For example, it has been shown by Taschin
et al [10, 15] that in the glass-former m-toluidine the heating effect is the main driving force
but, due to roto-translational coupling effects, both density and local orientation variables are
present in the relaxation process. In this material, the heating force produces a density grating
(or, better, a phase grating) and an orientational grating (a birefringence grating) and both these
gratings will contribute to the probing process. Indeed, which excitation forces and material
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Figure 2. The measured signals, with optical heterodyne detection, corresponding to different
polarization configurations are reported. The SV V V V and SH H V V signals in glycerol, obtained
by the corresponding two polarization configurations, are identical, showing that no birefringence
contribution is present.

modes are active has to be inferred by the experimental results. In fact, by performing HD-TG
experiments characterized by different combinations of polarization it is possible to get a good
insight into the excitation and relaxation processes [10, 11, 15]. So, if SH D

V V V V = SH D
V V H H

(hence Rε
V V V V = Rε

V V H H ) this implies that the direction of field polarization in the excitation
process is not relevant, and therefore the Ftq force is not effective. If we compare SH D

V V V V with
SH D

H H V V , we can get information on which mode is active. SH D
V V V V = SH D

H H V V shows that there
are no polarization effects in the probing process, so no birefringence effects are present, and
therefore no orientational response is present. Vice versa, if SH D

V V V V �= SH D
H H V V , this implies

that the orientational dynamics are active whatever the excitation is (direct due to the Fet force
or indirect due to the roto-translational coupling). In all the materials we studied (salol [11, 16],
m-toluidine [10], o-terphenyl [6] and glycerol [17]), we found SH D

V V V V = SH D
V V H H . This

suggests that the Fet force is weak even in molecules characterized by a strongly anisotropic
polarizability. Furthermore, in salol and m-toluidine, we found SH D

V V V V �= SH D
H H V V and vice

versa in o-terphenyl and glycerol, where we found SH D
V V V V = SH D

H H V V . Summarizing, in
glycerol (which has been investigated in the present work) we found SH D

V V V V = SH D
H H V V , see

figure 2, that proves the absence of polarization effects in this material. This implies that the
glycerol response is not affected by birefringence contributions and hence a study of mode
dynamics can neglect the orientational variable, concentrating on the pure density response.
Furthermore, in agreement with previous studies [18], we found also that the Fes force is not
active so that the whole measured response to be addressed is the density relaxation excited
by thermal effects (such a TG experiment has also been called impulsive stimulated thermal
scattering, or ISTS [7]).

3. Experimental details and results

The optical set-up and laser system has previously been described in [6]; here, we want to recall
only the main features. In the present HD-TG experiment, two infrared (λe = 1064 nm) short
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Figure 3. HD-TG data with q = 0.63 µm−1 for the V V V V configuration at four different
temperatures. These spectra show clearly the acoustic, structural and thermal relaxation processes.

(100 ps) laser pulses cross each other in the sample volume at an angle of ∼6◦ (q = 0.63 µm−1)

and their interference produces an impulsive, spatially modulated, heating due to absorption
by an overtone of the OH stretching mode. The amplitude of the resulting density grating is
probed by a third continuous wave (CW) laser beam (λpr = 532 nm) impinging on the induced
grating at the Bragg angle. The diffracted beam is beaten with the local field, Eloc, and then
it is stored as a function of time by a transient recorder and averaged over many thousands of
pump pulses. The two excitations, the probe and the local fields, are obtained by dividing the
pulsed and CW laser beams by a phase grating mask [6].

The SH D
V V V V data (corresponding to the vertical polarization for excitation pulses, probe

and detection) were collected in the temperature range T = 200–340 K. Signals as long as
1.6 ms were recorded with a time resolution of 0.25 ns. Glycerol (99.5, Fluka) was transferred
under a nitrogen atmosphere into a Teflon-coated cell with movable windows to reduce sample
stress and cracking [19]. The cell was mounted on the cold finger of a cryostat and fitted
with resistive heaters. A Pt100 thermometer is immersed in the sample, and the temperature
is kept stable to within 0.1 K. In figure 3 we report four typical sets of ISTS data. They
show, at all temperatures, damped acoustic oscillations at short times and thermal diffusion
at long times. On decreasing the temperature, the structural relaxation mode appears at first
as a strong acoustic damping, then later as a gradual rise of the ISTS signal, and at very
low temperatures, because of coupling with the thermal mode, as a non-exponential decay of
the long-time data. In the present paper, we focus on the long-time part of the ISTS signal
(t > 0.1 µs) where the acoustic transient is over and structural and entropy modes evolve
isobarically. Selected ISTS data are reported in figure 4 showing two time regions: ‘short
times’ (t < 10 µs) in the inserts and longer times in the main panels. It can be noted that
at short times the amplitude of the density grating (ISTS signal) increases with a stretched
exponential law, due to structural relaxation. On lowering the temperature, the characteristic
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Figure 4. ISTS data of supercooled glycerol at selected temperatures are reported in logarithmic
scale and normalized to unity at about t = 0.1 µs. The inserts show a blow up of the short-time
region, where the structural relaxation gives rise to a rising signal.

time of this rising component stops growing while its intensity (the amplitude of the stimulated
density grating associated with the structural relaxation) vanishes. At longer times the heat
diffuses and the density grating decays to zero. This long-time decay, which in the absence of
coupling is exponential (due to the diffusive character of the heat equation) [14], now splits
into two components. The faster component is nearly exponential and its time constant goes
through a maximum and gives rise to a dip in the apparent thermal diffusivity, as already
reported for OTP in [6]. The slower component shows strong non-exponentiality. It flattens
out and its intensity disappears as the temperature is lowered. To be more quantitative, we
fitted the data with two stretched exponentials for the ‘structural’ rising component and the
long-time tail, and a simple exponential for the intermediate-time component (apparent thermal
diffusion). The decay rates of the short and intermediate components are reported in figure 5;
we note that, in order to characterize the rate of the stretched exponential (exp[−(γ t)β]), we
used the inverse average time 〈τ 〉−1 = γβ/�(1/β), where � is the Euler gamma function. At
high temperatures, the structural relaxation decay rate (◦) is described by a Vogel–Tamman–
Fulcher (VTF) law (full curve). The parameters B = 2260 K, TV T F = 131 K of VTF
law, γV T F = τ−1

0 exp[−B/(T − TV T F )] are taken from dielectric spectroscopy [20] while
τ0 = 1.4 × 10−15 s is scaled to fit the data. At temperatures lower than ∼240 K the short-time
increasing component ceases to represent the structural relaxation and flattens at around a
value of 4 µs. At about the same temperature, the apparent thermal decay rate deviates from
the expected smooth behaviour (see the insert of figure 5) and exhibits a dip at T ≈ 230 K.
The overall scenario depicted in figure 5 suggests the existence of an interaction between the
structural and thermal relaxation dynamics that leads to a complex relaxation-time pattern.
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Figure 5. Temperature dependence of characteristic rates for the short rising component-apparent
structural relaxation (◦) and intermediate exponential decay-apparent thermal diffusion (•). The
full curve is the VTF law γV T F = τ−1

0 exp[−2260 K/(T − 131 K)].

4. Non-equilibrium thermodynamic model and data interpretation

In the following, we will introduce a non-equilibrium-thermodynamic (NET) model that will
allow us to compute the temperature evolution of this relaxation-time pattern and we find
very good agreement with the experimental observations. NET [21] provides a very powerful
framework to study irreversible processes, such as heat conduction, diffusion and viscous flow,
from a unified point of view. However, in this formalism, it is not straightforward to consider
the non-exponentiality observed in the structural relaxation dynamics. On the contrary, the
presence of a large number of internal relaxing variables can be easily taken into account,
provided that local thermodynamic equilibrium is valid in the extended parameter space.
Therefore, following Allain et al [4], we choose to represent the observed non-exponentiality
as the result of the superposition of N linearly relaxing variables. The number N should not
be read as a number of well-defined physical variables, but rather as the discrete representation
of either a distribution of independent Debye relaxing variables, or a single strongly non-
exponential relaxing variable. The choice of representing a distribution of relaxation times
as a sum of exponential decays is imposed by our will to approach the problem within the
framework of non-equilibrium thermodynamics in its usual linear formulation. It is important
to note that the specific studies and experiments presented in this work do not allow one to find
whether the underlying relaxation process is homogeneous and intrinsically non-exponential
or if it is heterogeneous, i.e. the superposition of different, spatially separated, genuine Debye
processes (see [22] for a comprehensive review on the subject). In this hypothesis, the Gibbs
free energy law per unit mass is

dg = v d p − s dT −
N∑

i=1

Ai dξ i (5)

where p is the pressure, s is the entropy, Ai is the affinity of the i th relaxation process and
ξ i is the corresponding progress variable (or order parameter). We remark that the following
analysis is independent from the precise physical meaning of the ξ parameters; it only relies
on the fact that

(i) they are frozen on a timescale shorter than the structural relaxation time (τα);
(ii) they relax toward their equilibrium values on a timescale much greater than τα .
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As noted above, we are interested in the time region where the pressure becomes and stays
uniform. In this time region, the linearized non-equilibrium thermodynamic equations [21]
written in terms of the q components of the thermodynamic variables (e.g. T stands for
T (t) = ∫

exp(iqr)T (, t)), are

p = 0
T0ρ0(∂s/∂ t) = −q2λT
∂ξ i/∂ t = −β i Ai

(6)

where T0 (ρ0) is the average temperature (density), λ is the thermal conductivity and β i are
phenomenological constants. The first equation of (6) comes from the linearized combined
mass momentum conservation laws:

∂2ρ/∂ t2 + (ηq2/ρ0)∂ρ/∂ t + q2 p = 0.

After acoustic transient, the terms involving derivatives of density are negligible. The second
and third equations of (6) represent the energy conservation law and the phenomenological
relations for the relaxation processes, respectively. In order to close the above set of equations,
we use the local thermal equilibrium in the extended parameter space:

ρ = ρ(p, T, ξ1, . . . , ξ N ),

s = s(p, T, ξ1, . . . , ξ N ),

Ai = Ai (p, T, ξ i ).

(7)

For simplicity, we assume that the thermodynamic affinity Ai does not depend on ξ j for j �= i .
Differentiating the above equations and substituting in (6) we obtain

ρ = −ρ0α∞ T + (ρ2
0 c∞

p /T0)

N∑
i=1

�i(ξ i
p/ξ

i
T )ζ i (8)

∂T/∂ t = −�∞
H T −

N∑
i=1

�i
R�i (T − ζ i) (9)

∂ζ i/∂ t = −�i
R(ζ i − T ), (10)

where we have introduced the following symbols:

α∞ = −ρ−1(∂ρ/∂T )pξ c∞
p = T0(∂S/∂T )pξ

�i = T0 Ai
ξ ξ

i2
T /c∞

p Ai
ξ = (∂ Ai/∂ξ i)pT

ξ i
p = (∂ξ i/∂p)Ai T ξ i

T = (∂ξ i/∂T )Ai p (11)

ζ i = ξ i/ξ i
T �∞

H = λq2/ρ0c∞
p .

The ISTS density response is obtained by solving (9), (10) for the initial condition T (0) �= 0,
ξ i (0) = 0 and then substituting in (8). To reduce the number of parameters, we use the
simplifying assumption that ξ i

p/ξ
i
T is independent of i [4]. In that case, ρ(t) can be written as

ρ(t)/ρ(0) = −T (t)/T (0) − �α

α∞

c∞
p

�cp

N∑
i=1

�iζ i(t) (12)

where �α and �cp are the jumps from the relaxed to the unrelaxed (with respect to the ζ i )
values of the corresponding thermodynamic derivatives:

�α = −ρ0

∑
Ai

ξ ξ
i
pξ

i
T

�cp = T0

∑
Ai

ξ (ξ
i
T )2.
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Figure 6. ISTS data (◦) and the predicted signal (full curve) for four different temperatures. The
agreement is very good through the whole structural-entropic coupling region.

It can easily be shown that in the limit �i
R 
 �∞

H —i.e. at low-T or high-q values—this model
predicts a density–density correlation function which at long times decays as

φq(t) ∝
N∑

i=1

�i exp[−�i
Rt]. (13)

We know from photocorrelation experiments, mode coupling theory and molecular dynamics
simulations that the above correlator is very well described by a stretched exponential
exp[−(t/τα)

β], where β slightly changes with temperature and τα obeys a VTF law. Relying
on this consideration, we arbitrarily choose a distribution of N = 150 logarithmically spaced
rates �i

R = (�α)10xi , xi = −1 + i/28, with weights �i such that the sum (13) reconstructs a
stretched exponential with β = 0.65 [3, 18]. We note that, given the constraints in the model,
the number of input parameters does not change with N . We also remark that, for large enough
N (>10), the solution is practically independent of N . This determines the weights, apart
from a constant factor which in turn can be easily fixed by the value of �cp/c∞

p = ∑
�i from

specific heat spectroscopy data [3]. The temperature simply changes the value of �α which
is assumed to obey the already quoted VTF law. We can assume �∞

H (T ) = (c0
p/c∞

p )�0
H (T ),

where �0
H (T ) is the extrapolation to the whole temperature range of ISTS thermal decay rates

at high temperature. Finally, from ρ(T ) data across the glass-transition temperature [23], one
finds �α ∼ 3.2α∞ . We are now left with no more free parameters: for each temperature we
can compute the ISTS signal and compare it to the experimental data. As examples, the results
of this comparison are shown in figure 6 for four different temperatures, showing an excellent
agreement between the data (◦) and the model (full curve) in the whole of the temperature
range examined. A complementary and more insightful way of representing complex time
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Figure 7. Computed evolution of the distribution of rates G as a function of the logarithmic ratio
r = log10(�α/�∞

H ) between the structural relaxation characteristic rate and the infinite frequency
thermal decay rate. Circles in the left panel represent the experimental values.

responses consists in performing an inverse Laplace transform analysis:

I (t) =
∫ ∞

−∞
G(log γ ) exp[−γ t] d log γ. (14)

In other words, one can think of the ISTS signal as a superposition of exponentials and ask
how the weight function G evolves across the coupling region. In this representation, it is
easier to visualize the analysed phenomenology as the interaction between an exponential
thermal process and a broad distribution of relaxing variables. As a consequence, the relation
between the flattening in the ‘structural’ rate, the dip in the thermal rate and the appearance
of a long-time tail becomes evident. Such an analysis has been carried out on the simulated
signals and is summarized in figure 7. The top figure in the right panel represents G in
the high-temperature region where no coupling is present. Structural relaxation manifests
itself as a rising (negative weight) stretched (broad distribution) exponential, while at longer
times (smaller rates) thermal diffusion contributes to the signal with an exponentially (narrow)
decaying (positive weight) component. As the temperature is lowered, the broad structural
mode moves to shorter rates until the tail of its rate distribution reaches the entropy-mode
timescale. As a result, the timescale of the negative component ceases to vary and its intensity
vanishes. On the other hand, the positive component broadens, moving to smaller rates and
then splits into two components: a narrow one which moves to larger rates, lowering the
temperature, and a broad one which becomes flatter and flatter and decays to zero. In the left
panel of figure 7, we report the evolution of G as a function of log10(�α/�∞

H ). Black and
white regions represent negative and positive weights, respectively. The circles represent the
normalized average rates for the rising (white) and first part of the decaying (black) portion of
the experimental ISTS signal. The full upper line is the computed inverse average time 1/〈τ 〉
of the negative component. In conclusion, a non-equilibrium thermodynamic model, based on
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the assumption of local thermodynamic equilibrium in an extended parameter space, accounts
for the rich phenomenology observed in the ISTS experiments. In particular, using new ISTS
data on supercooled glycerol in the temperature region where the structural relaxation and
the thermal diffusion process take place on the same timescale, we have demonstrated that the
model is able to reproduce experimental data using data from other experiments in the literature.
Further investigations into the possibility of assuming local thermodynamic equilibrium in
supercooled liquids are crucial to the development of a thermodynamic description of glass-
forming liquids.
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